LOS TRANSFORMADORES

Los transformadores
View more documents from chunata

domingo, 20 de mayo de 2012

UNIDAD 5

UNIDAD 5

MOTORES UNIVERSALES
 
Los motores universales son motores en serie de potencia fraccional, de corriente alterna, diseñados especialmente para usarse en potencia ya sea de corriente continua o de corriente alterna. Recordemos que el motor serie de corriente continua se caracteriza por disponer de un fuerte par de arranque y que la velocidad del rotor varía en sentido inverso de la carga, pudiendo llegar a embalarse cuando funciona en vacío. Estos motores tienen la misma característica de velocidad y par cuando funcionan en c.a. o en c.c. En general, los motores universales pequeños no requieren devanados compensadores debido a que el número de espiras de su armadura es reducido y por lo tanto, también lo será su reactancia de armadura. Como resultado, los motores inferiores a 3/8 de caballo de fuerza generalmente se construyen sin compensación. El costo de los motores universales no compensados es relativamente bajo por lo que su aplicación es muy común en aparatos domésticos ligeros, por ejemplo: aspiradoras, taladros de mano, licuadoras, etc. El motor universal es sin duda, el más utilizado en la industria del electrodoméstico. Su nombre deriva del hecho de que puede funcionar tanto en corriente alterna como en corriente continua. Para que un motor de este tipo pueda funcionar con c.a. es necesario que el empilado de su inductor (el núcleo de los electroimanes) sea de chapa magnética para evitar las corrientes de Foucault. Por otra parte, la conmutación resulta en los motores universales que en los de corriente continua, por lo que la vida de las escobillas y el colector es más corta, inconveniente que reduce mucho el campo de aplicación de los motores universales.
Los motores universales grandes tienen algún tipo de compensación. Normalmente se trata del devanado compensador del motor serie o un devanado de campo distribuido especialmente para contrarrestar los problemas de la reacción de armadura.
Su esquema de conexiones y sus características de funcionamiento corresponden a las de un motor serie.
El estator de los motores universales que se utilizan en electrodomésticos (y también para otros servicios) suele ser bipolar, con dos bobinas inductoras.
La parte más delicada y de construcción más laboriosa de estos motores es el rotor o inducido. Núcleo, bobinados, colector y eje requieren una construcción muy cuidada. En general, los motores universales para electrodomésticos están calculados para girar a altas velocidades; y como los entrehierros son pequeños, cualquier descentramiento o desequilibrio existente en el conjunto rotor produce vibraciones que pueden perturbar el funcionamiento y dañar seriamente el motor. Estos motores se someten a una operación de equilibrado que se efectúa con complicados instrumentos electrónicos.
El eje, que gira a gran velocidad, debe sustentarse en rodamientos de bolas o sobre casquillos de bronce poroso autolubricantes.
La velocidad de estos motores depende de la carga: a más carga, menos velocidad y viceversa. Esta propiedad y el poseer un elevado par de arranque son lo más característico de los motores universales.




FUNCIONAMIENTO DEL MOTOR UNIVERSAL
Los motores universales funcionan generalmente en altas velocidades, de 3.500 a 20.000 r.p.m., esto da lugar a un alto cociente de energía-a-peso y de energía-a-tamaño, haciéndolos deseables para las herramientas hand-held, aspiradores y máquinas de costura. Un motor universal tiene altas velocidades usando diversas corrientes de una fuente de energía. El funcionamiento cerca de la carga clasificada es similar para todas las fuentes, comenzar el esfuerzo de torsión es alto y la regulación de la velocidad es pobre, la velocidad es muy alta en las cargas que son bajas. Teóricamente, en la carga cero la velocidad llega a ser infinita, así algunos motores universales deben emplear controles de velocidad.
Este motor está construido de manera que cuando los devanados inducido e inductor están unidos en serie y circula una corriente por ellos, se forman dos flujos magnéticos que al reaccionar provocan el giro del rotor, tanto si la tensión aplicada es continua como alterna.



CONSTRUCCIÓN DE LOS MOTORES UNIVERSALES
Las partes principales del motor universal con arrollamiento inductor concentrado son:
  • Carcasa
  • Estator
  • Inducido
  • Los escudos
La carcasa suele ser por lo regular de acero laminado, de aluminio o de fundición con dimensiones adecuadas para mantener firmes las chapas del estator. Los polos suelen estar afianzados a la carcasa con pernos pasantes. Con frecuencia se construye la carcasa de una pieza, con los soportes o pies del motor.
El estator o inductor, que se representa junto con otras partes componentes, consiste en un paquete de chapas de forma adecuada, fuertemente prensadas y fijadas mediante remaches o pernos.
El inducido es similar al de un motor de corriente continua pequeño. Consiste en un paquete de chapas que forma un núcleo compacto con ranuras normales u oblicuas y un colector al cual van conectados los terminales del arrollamiento inducido. Tanto el núcleo de chapas como el colector, van sólidamente asentados sobre el eje.
Los escudos, como en todos los motores, van montados en los lados frontales de la carcasa y asegurados con tornillos. En los escudos van alojados los cojinetes, que pueden ser de resbalamiento o de bolas, en los que descansan los extremos del eje. En muchos motores universales pueden desmontarse sólo un escudo, pues el otro está fundido con la carcasa. Los portaescobillas van por lo regular sujetos al escudo frontal mediante pernos.

UNIDAD 4

UNIDAD 4

Motores monofásicos

Este tipo de motor es muy utilizado en electrodomésticos porque pueden funcionar con redes monofásicas algo que ocurre con nuestras viviendas.
En los motores monofásicos no resulta sencillo iniciar el campo giratorio, por lo cual, se tiene que usar algún elemento auxiliar. Dependiendo del método empleado en el arranque, podemos distinguir dos grandes grupos de motores monofásicos: 

Motor monofásico de inducción.

Su funcionamiento es el mismo que el de los motores asíncronos de inducción. Dentro de este primer grupo disponemos de los siguientes motores:

1. De polos auxiliares o también llamados de fase partida.
2. Con condensador.
3. Con espira en cortocircuito o también llamados de polos partidos.

Motor monofásico de colector.

Son similares a los motores de corriente continua respecto a su funcionamiento. Existen dos clases de estos motores:

1. Universales.
2. De repulsión.





Motor monofásico de fase partida.

Este tipo de motor tiene dos devanados bien diferenciados, un devanado principal y otro devanado auxiliar. El devanado auxiliar es el que provoca el arranque del motor, gracias a que desfasa un flujo magnético respecto al flujo del devanado principal, de esta manera, logra tener dos fases en el momento del arranque.
Al tener el devanado auxiliar la corriente desfasada respecto a la corriente principal, se genera un campo magnético que facilita el giro del rotor. Cuando la velocidad del giro del rotor acelera el par de motor aumenta. Cuando dicha velocidad está próxima al sincronismo, se logran alcanzar un par de motor tan elevado como en un motor trifásico, o casi. Cuando la velocidad alcanza un 75 % de sincronismo, el devanado auxiliar se desconecta gracias a un interruptor centrífugo que llevan incorporados estos motores de serie, lo cual hace que el motor solo funcione con el devanado principal.
Este tipo de motor dispone de un rotor de jaula de ardilla como los utilizados en los motores trifásicos.
El par de motor de éstos motores oscila entre 1500 y 3000 r.p.m., dependiendo si el motor es de 2 ó 4 polos, teniendo unas tensiones de 125 y 220 V. La velocidad es prácticamente constante. Para invertir el giro del motor se intercambian los cables de uno solo de los devanados (principal o auxiliar), algo que se puede realizar facilmente en la caja de conexiones o bornes que viene de serie con el motor.







 

UNIDAD 3

UNIDAD 3

Motores de corriente alterna

Se denomina motor de corriente alterna a aquellos motores eléctricos que funcionan con corriente alterna. Un motor es una máquina motriz, esto es, un aparato que convierte una forma determinada de energía en energía mecánica de rotación o par. Un motor eléctrico convierte la energía eléctrica en fuerzas de giro por medio de la acción mutua de los campos magnéticos.
Un generador eléctrico, por otra parte, transforma energía mecánica de rotación en energía eléctrica y se le puede llamar una máquina generatriz de fem. Las dos formas básicas son el generador de corriente continua y el generador de corriente alterna, este último más correctamente llamado alternador.
Todos los generadores necesitan una máquina motriz (motor) de algún tipo para producir la fuerza de rotación, por medio de la cual un conductor puede cortar las líneas de fuerza magnéticas y producir una fem. La máquina más simple de los motores y generadores es el alternador.


En algunos casos, tales como barcos, donde la fuente principal de energía es de corriente continua, o donde se desea un gran margen, pueden emplearse motores de c-c. Sin embargo, la mayoría de los motores modernos trabajan con fuentes de corriente alterna. Existe una gran variedad de motores de c-a, entre ellos tres tipos básicos: el universal, el síncrono y el de jaula de ardilla.

Los motores de C.A. se clasifican de la siguiente manera:

Asíncrono o de inducción

Los motores asíncronos o de inducción son aquellos motores eléctricos en los que el rotor nunca llega a girar en la misma frecuencia con la que lo hace el campo magnético del estator. Cuanto mayor es el par motor mayor es esta diferencia de frecuencias.
 

Jaula de ardilla

Un rotor de jaula de ardilla es la parte que rota usada comúnmente en un motor de inducción de corriente alterna. Un motor eléctrico con un rotor de jaula de ardilla también se llama "motor de jaula de ardilla". En su forma instalada, es un cilindro montado en un eje. Internamente contiene barras conductoras longitudinales de aluminio o de cobre con surcos y conectados juntos en ambos extremos poniendo en cortocircuito los anillos que forman la jaula. El nombre se deriva de la semejanza entre esta jaula de anillos y barras y la rueda de un hámster (ruedas probablemente similares existen para las ardillas domésticas)
Anteriormente se usaban rotores con barras conectadas entre si con tuercas lo que da problemas cuando perdían presión y provocan mal contacto. Eso se mejoro usando jaulas de ardilla sin tuercas, son de material fundido, en el futuro se pretende utilizar cobre en la jaula para mejorar la eficiencia, actualmente se utiliza aluminio.



Cambio de sentido de giro

Para efectuar el cambio de sentido de giro de los motores eléctricos de corriente alterna se siguen unos simples pasos tales como:
  • Para motores monofásicos únicamente es necesario invertir las terminales del devanado de arranque, esto se puede realizar manualmente o con unos relevadores
  • Para motores trifásicos únicamente es necesario invertir dos de las conexiones de alimentación correspondientes a dos fases de acuerdo a la secuencia de trifases.
  • Para motores de a.c. es necesario invertir los contactos del par de arranque.

 


 

UNIDAD 2

UNIDAD 2

Motores de corriente continua

El motor de corriente continua es una máquina que convierte la energía eléctrica continua en mecánica, provocando un movimiento rotatorio. En la actualidad existen nuevas aplicaciones con motores eléctricos que no producen movimiento rotatorio, sino que con algunas modificaciones, ejercen tracción sobre un riel. Estos motores se conocen como motores lineales.
Esta máquina de corriente continua es una de las más versátiles en la industria. Su fácil control de posición, paro y velocidad la han convertido en una de las mejores opciones en aplicaciones de control y automatización de procesos. Pero con la llegada de la electrónica su uso ha disminuido en gran medida, pues los motores de corriente alterna, del tipo asíncrono, pueden ser controlados de igual forma a precios más accesibles para el consumidor medio de la industria. A pesar de esto los motores de corriente continua se siguen utilizando en muchas aplicaciones de potencia (trenes y tranvías) o de precisión (máquinas, micro motores, etc.)
La principal característica del motor de corriente continua es la posibilidad de regular la velocidad desde vacío a plena carga.
Su principal inconveniente, el mantenimiento, muy caro y laborioso.
Una máquina de corriente continua (generador o motor) se compone principalmente de dos partes, un estator que da soporte mecánico al aparato y tiene un hueco en el centro generalmente de forma cilíndrica. En el estator además se encuentran los polos, que pueden ser de imanes permanentes o devanados con hilo de cobre sobre núcleo de hierro. El rotor es generalmente de forma cilíndrica, también devanado y con núcleo, al que llega la corriente mediante dos escobillas.
También se construyen motores de CC con el rotor de imanes permanentes para aplicaciones especiales.



Principio de funcionamiento

Según la Ley de Lorentz, cuando un conductor por el que pasa una corriente eléctrica se sumerge en un campo magnético, el conductor sufre una fuerza perpendicular al plano formado por el campo magnético y la corriente, siguiendo la regla de la mano izquierda, con módulo
F = B \cdot l \cdot I
  • F: Fuerza en newtons
  • I: Intensidad que recorre el conductor en amperios
  • l: Longitud del conductor en metros
  • B: Densidad de campo magnético o densidad de flujo teslas
El rotor tiene varios repartidos por la periferia. A medida que gira, la corriente se activa en el conductor apropiado.
Normalmente se aplica una corriente con sentido contrario en el extremo opuesto del rotor, para compensar la fuerza neta y aumentar el momento.




Los motores de corriente continua se clasifican según la forma como estén conectados, en:
  • Motor serie
  • Motor compound
  • Motor shunt
  • Motor eléctrico sin escobillas
Además de los anteriores, existen otros tipos que son utilizados en electrónica:
  • Motor paso a paso
  • Servomotor
  • Motor sin núcleo


miércoles, 16 de mayo de 2012

UNIDAD 1

UNIDADAD UNO

Nombre: Luis Chunata
Semestre: 2 do "A" electricidad

INTRODUCCION

Motor eléctrico

Un motor eléctrico es una máquina eléctrica que transforma energía eléctrica en energía mecánica por medio de campos magnéticos variables electromagnéticas. Algunos de los motores eléctricos son reversibles, pueden transformar energía mecánica en energía eléctrica funcionando como generadores. Los motores eléctricos de tracción usados en locomotoras realizan a menudo ambas tareas, si se los equipa con frenos regenerativos.
Son ampliamente utilizados en instalaciones industriales, comerciales y particulares. Pueden funcionar conectados a una red de suministro eléctrico o a baterías. Así, en automóviles se están empezando a utilizar en vehículos híbridos para aprovechar las ventajas de ambos.

Principio de funcionamiento

Los motores de corriente alterna y los de corriente continua se basan en el mismo principio de funcionamiento, el cual establece que si un conductor por el que circula una corriente eléctrica se encuentra dentro de la acción de un campo magnético, éste tiende a desplazarse perpendicularmente a las líneas de acción del campo magnético.
El conductor tiende a funcionar como un electroimán debido a la corriente eléctrica que circula por el mismo adquiriendo de esta manera propiedades magnéticas, que provocan, debido a la interacción con los polos ubicados en el estátor, el movimiento circular que se observa en el rotor del motor. Aprovechando el estator y rotor ambos de acero laminado al silicio se produce un campo magnético uniforme en el motor.
Partiendo del hecho de que cuando pasa corriente por un conductor produce un campo magnético, además si lo ponemos dentro de la acción de un campo magnético potente, el producto de la interacción de ambos campos magnéticos hace que el conductor tienda a desplazarse produciendo así la energía mecánica. Dicha energía es comunicada al exterior mediante un dispositivo llamado flecha.


Ventajas

En diversas circunstancias presenta muchas ventajas respecto a los motores de combustión:
  • A igual potencia, su tamaño y peso son más reducidos.
  • Se pueden construir de cualquier tamaño.
  • Tiene un par de giro elevado y, según el tipo de motor, prácticamente constante.
  • Su rendimiento es muy elevado (típicamente en torno al 75%, aumentando el mismo a medida que se incrementa la potencia de la máquina).
  • Este tipo de motores no emite contaminantes, aunque en la generación de energía eléctrica de la mayoría de las redes de suministro sí emiten contaminantes.                                                      
Motor paso a paso
El motor paso a paso es un dispositivo electromecánico que convierte una serie de impulsos eléctricos en desplazamientos angulares discretos, lo que significa es que es capaz de avanzar una serie de grados (paso) dependiendo de sus entradas de control. El motor paso a paso se comporta de la misma manera que un conversión digital-analógica y puede ser gobernado por impulsos procedentes de sistemas lógicos.
Este motor presenta las ventajas de tener alta precisión y repetitividad en cuanto al posicionamiento. Entre sus principales aplicaciones destacan como motor de frecuencia variable, motor de corriente continua sin escobillas, servomotores y motores controlados digitalmente.
Existen 3 tipos fundamentales de motores paso a paso: el motor de reluctancia variable, el motor de magnetización permanente, y el motor paso a paso híbrido.

Tipos de motores paso a paso

El motor de paso de rotor de imán permanente: Permite mantener un par diferente de cero cuando el motor no está energizado. Dependiendo de la construcción del motor, es típicamente posible obtener pasos angulares de 7.5, 11.25, 15, 18, 45 o 90°. El ángulo de rotación se determina por el número de polos en el estator
El motor de paso de reluctancia variable (VR): Tiene un rotor multipolar de hierro y un estator devanado laminado, y rota cuando los dientes del rotor son atraídos a los dientes del estator electromagnéticamente energizados. La inercia del rotor de un motor de paso de reluctancia variable es pequeña y la respuesta es muy rápida, pero la inercia permitida de la carga es pequeña. Cuando los devanados no están energizados, el par estático de este tipo de motor es cero. Generalmente, el paso angular de este motor de paso de reluctancia variable es de 15°
El motor híbrido de paso: Se caracteriza por tener varios dientes en el estator y en el rotor, el rotor con un imán concéntrico magnetizado axialmente alrededor de su eje. Se puede ver que esta configuración es una mezcla de los tipos de reluctancia variable e imán permanente. Este tipo de motor tiene una alta precisión y alto par y se puede configurar para suministrar un paso angular tan pequeño como 1.8°.
Motores paso a paso Bipolares: Estos tienen generalmente 4 cables de salida. Necesitan ciertos trucos para ser controlados debido a que requieren del cambio de dirección de flujo de corriente a través de las bobinas en la secuencia apropiada para realizar un movimiento.
Motores paso a paso unipolares: estos motores suelen tener 5 ó 6 cables de salida dependiendo de su conexionado interno. Este tipo se caracteriza por ser más simple de controlar, estos utilizan un cable común a la fuente de alimentación y posteriormente se van colocando las otras lineas a tierra en un orden especifico para generar cada paso, si tienen 6 cables es porque cada par de bobinas tiene un común separado, si tiene 5 cables es porque las cuatro bobinas tiene un solo común; un motor unipolar de 6 cables puede ser usado como un motor bipolar si se deja las lineas del común al aire.